Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Eur J Med Chem ; 256: 115474, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2315252

RESUMEN

The COVID-19 pandemic reveals the urgent need to develop new therapeutics targeting the SARS-CoV-2 replication machinery. The first antiviral drugs were nucleoside analogues targeting RdRp and protease inhibitors active on nsp5 Mpro. In addition to these common antiviral targets, SARS-CoV-2 codes for the highly conserved protein nsp14 harbouring N7-methyltransferase (MTase) activity. Nsp14 is involved in cap N7-methylation of viral RNA and its inhibition impairs viral RNA translation and immune evasion, making it an attractive new antiviral target. In this work, we followed a structure-guided drug design approach to design bisubstrates mimicking the S-adenosylmethionine methyl donor and RNA cap. We developed adenosine mimetics with an N-arylsulfonamide moiety in the 5'-position, recently described as a guanine mimicking the cap structure in a potent adenosine-derived nsp14 inhibitor. Here, the adenine moiety was replaced by hypoxanthine, N6-methyladenine, or C7-substituted 7-deaza-adenine. 26 novel adenosine mimetics were synthesized, one of which selectively inhibits nsp14 N7-MTase activity with a subnanomolar IC50 (and seven with a single-digit nanomolar IC50). In the most potent inhibitors, adenine was replaced by two different 7-deaza-adenines bearing either a phenyl or a 3-quinoline group at the C7-position via an ethynyl linker. These more complex compounds are barely active on the cognate human N7-MTase and docking experiments reveal that their selectivity of inhibition might result from the positioning of their C7 substitution in a SAM entry tunnel present in the nsp14 structure and absent in the hN7-MTase. These compounds show moderate antiviral activity against SARS-CoV-2 replication in cell culture, suggesting delivery or stability issue.


Asunto(s)
COVID-19 , Metiltransferasas , Humanos , Metiltransferasas/metabolismo , Adenosina/farmacología , Pandemias , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo , Antivirales/farmacología , S-Adenosilmetionina , ARN Viral/genética , Adenina
2.
Antiviral Res ; 210: 105501, 2023 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2165060

RESUMEN

Nucleoside/tide analogues (NAs) have long been used in the fight against viral diseases, and now present a promising option for the treatment of COVID-19. Once activated to the 5'-triphosphate state, NAs act by targeting the viral RNA-dependent RNA-polymerase for incorporation into the viral RNA genome. Incorporated analogues can either 'kill' (terminate) synthesis, or 'corrupt' (genetically or chemically) the RNA. Against coronaviruses, the use of NAs has been further complicated by the presence of a virally encoded exonuclease domain (nsp14) with proofreading and repair capacities. Here, we describe the mechanism of action of four promising anti-COVID-19 NAs; remdesivir, molnupiravir, favipiravir and bemnifosbuvir. Their distinct mechanisms of action best exemplify the concept of 'killers' and 'corruptors'. We review available data regarding their ability to be incorporated and excised, and discuss the specific structural features that dictate their overall potency, toxicity, and mutagenic potential. This should guide the synthesis of novel analogues, lend insight into the potential for resistance mutations, and provide a rational basis for upcoming combinations therapies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Nucleótidos/farmacología , Nucleótidos/química , Antivirales/uso terapéutico , ARN Viral/genética
3.
Org Biomol Chem ; 20(38): 7582-7586, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2050570

RESUMEN

N-Acylsulfonamides possess an additional carbonyl function compared to their sulfonamide analogues. Due to their unique physico-chemical properties, interest in molecules containing the N-acylsulfonamide moiety and especially nucleoside derivatives is growing in the field of medicinal chemistry. The recent renewal of interest in antiviral drugs derived from nucleosides containing a sulfonamide function has led us to evaluate the therapeutic potential of N-acylsulfonamide analogues. While these compounds are usually obtained by a difficult acylation of sulfonamides, we report here the easy and efficient synthesis of 20 4'-(N-acylsulfonamide) adenosine derivatives via the sulfo-click reaction. The target compounds were obtained from thioacid and sulfonyl azide synthons in excellent yields and were evaluated as potential inhibitors of the SARS-CoV-2 RNA cap N7-guanine-methyltransferase nsp14.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Metiltransferasas , Adenosina/farmacología , Antivirales/farmacología , Azidas , Exorribonucleasas/química , Exorribonucleasas/genética , Guanina , Humanos , Nucleósidos/farmacología , Caperuzas de ARN , ARN Viral/genética , SARS-CoV-2 , Sulfonamidas/farmacología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
4.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1997741

RESUMEN

There is a clear need for novel antiviral concepts to control SARS-CoV-2 infection. Based on the promising anti-coronavirus activity observed for a class of 1,4,4-trisubstituted piperidines, we here conducted a detailed analysis of the structure-activity relationship of these structurally unique inhibitors. Despite the presence of five points of diversity, the synthesis of an extensive series of analogues was readily achieved by Ugi four-component reaction from commercially available reagents. After evaluating 63 analogues against human coronavirus 229E, four of the best molecules were selected and shown to have micromolar activity against SARS-CoV-2. Since the action point was situated post virus entry and lying at the stage of viral polyprotein processing and the start of RNA synthesis, enzymatic assays were performed with CoV proteins involved in these processes. While no inhibition was observed for SARS-CoV-2 nsp12-nsp7-nsp8 polymerase, nsp14 N7-methyltransferase and nsp16/nsp10 2'-O-methyltransferase, nor the nsp3 papain-like protease, the compounds clearly inhibited the nsp5 main protease (Mpro). Although the inhibitory activity was quite modest, the plausibility of binding to the catalytic site of Mpro was established by in silico studies. Therefore, the 1,4,4-trisubstituted piperidines appear to represent a novel class of non-covalent CoV Mpro inhibitors that warrants further optimization and development.

5.
J Virol ; 96(16): e0067122, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1973790

RESUMEN

Positive-strand RNA viruses replicate their genomes using virally encoded RNA-dependent RNA polymerases (RdRP) with a common active-site structure and closure mechanism upon which replication speed and fidelity can evolve to optimize virus fitness. Coronaviruses (CoV) form large multicomponent RNA replication-transcription complexes containing a core RNA synthesis machine made of the nsp12 RdRP protein with one nsp7 and two nsp8 proteins as essential subunits required for activity. We show that assembly of this complex can be accelerated 5-fold by preincubation of nsp12 with nsp8 and further optimized with the use of a novel nsp8L7 heterodimer fusion protein construct. Using rapid kinetics methods, we measure elongation rates of up to 260 nucleotides (nt)/s for the core replicase, a rate that is unusually fast for a viral polymerase. To address the origin of this fast rate, we examined the roles of two CoV-specific residues in the RdRP active site: Ala547, which replaces a conserved glutamate above the bound NTP, and Ser759, which mutates the palm domain GDD sequence to SDD. Our data show that Ala547 allows for a doubling of replication rate, but this comes at a fidelity cost that is mitigated by using a SDD sequence in the palm domain. Our biochemical data suggest that fixation of mutations in polymerase motifs F and C played a key role in nidovirus evolution by tuning replication rate and fidelity to accommodate their large genomes. IMPORTANCE Replicating large genomes represents a challenge for RNA viruses because fast RNA synthesis is needed to escape innate immunity defenses, but faster polymerases are inherently low-fidelity enzymes. Nonetheless, the coronaviruses replicate their ≈30-kb genomes using the core polymerase structure and mechanism common to all positive-strand RNA viruses. The classic explanation for their success is that the large-genome nidoviruses have acquired an exonuclease-based repair system that compensates for the high polymerase mutation rate. In this work, we establish that the nidoviral polymerases themselves also play a key role in maintaining genome integrity via mutations at two key active-site residues that enable very fast replication rates while maintaining typical mutation rates. Our findings further demonstrate the evolutionary plasticity of the core polymerase platform by showing how it has adapted during the expansion from short-genome picornaviruses to long-genome nidoviruses.


Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Dominio Catalítico , Genoma Viral , ARN/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Replicación Viral
6.
Antiviral Res ; 204: 105364, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1894784

RESUMEN

Viral exoribonucleases are uncommon in the world of RNA viruses. To date, they have only been identified in the Arenaviridae and the Coronaviridae families. The exoribonucleases of these viruses play a crucial role in the pathogenicity and interplay with host innate immune response. Moreover, coronaviruses exoribonuclease is also involved in a proofreading mechanism ensuring the genetic stability of the viral genome. Because of their key roles in virus life cycle, they constitute attractive target for drug design. Here we developed a sensitive, robust and reliable fluorescence polarization assay to measure the exoribonuclease activity and its inhibition in vitro. The effectiveness of the method was validated on three different viral exoribonucleases, including SARS-CoV-2, Lymphocytic Choriomeningitis and Machupo viruses. We performed a screening of a focused library consisting of 113 metal chelators. Hit compounds were recovered with an IC50 at micromolar level. We confirmed 3 hits in SARS-CoV-2 infected Vero-E6 cells.


Asunto(s)
Antivirales , Arenavirus , Exorribonucleasas , SARS-CoV-2 , Animales , Antivirales/farmacología , Arenavirus/efectos de los fármacos , Chlorocebus aethiops , Exorribonucleasas/antagonistas & inhibidores , Polarización de Fluorescencia , SARS-CoV-2/efectos de los fármacos , Células Vero , Proteínas no Estructurales Virales/antagonistas & inhibidores
7.
J Med Chem ; 65(8): 6231-6249, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1867997

RESUMEN

Enzymes involved in RNA capping of SARS-CoV-2 are essential for the stability of viral RNA, translation of mRNAs, and virus evasion from innate immunity, making them attractive targets for antiviral agents. In this work, we focused on the design and synthesis of nucleoside-derived inhibitors against the SARS-CoV-2 nsp14 (N7-guanine)-methyltransferase (N7-MTase) that catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine (SAM) cofactor to the N7-guanosine cap. Seven compounds out of 39 SAM analogues showed remarkable double-digit nanomolar inhibitory activity against the N7-MTase nsp14. Molecular docking supported the structure-activity relationships of these inhibitors and a bisubstrate-based mechanism of action. The three most potent inhibitors significantly stabilized nsp14 (ΔTm ≈ 11 °C), and the best inhibitor demonstrated high selectivity for nsp14 over human RNA N7-MTase.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , SARS-CoV-2 , COVID-19/virología , Exorribonucleasas/antagonistas & inhibidores , Exorribonucleasas/química , Humanos , Metiltransferasas , Simulación del Acoplamiento Molecular , ARN Viral/genética , S-Adenosilmetionina , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Sulfonamidas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química
8.
Nat Commun ; 13(1): 621, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1671551

RESUMEN

The guanosine analog AT-527 represents a promising candidate against Severe Acute Respiratory Syndrome coronavirus type 2 (SARS-CoV-2). AT-527 recently entered phase III clinical trials for the treatment of COVID-19. Once in cells, AT-527 is converted into its triphosphate form, AT-9010, that presumably targets the viral RNA-dependent RNA polymerase (RdRp, nsp12), for incorporation into viral RNA. Here we report a 2.98 Å cryo-EM structure of the SARS-CoV-2 nsp12-nsp7-nsp82-RNA complex, showing AT-9010 bound at three sites of nsp12. In the RdRp active-site, one AT-9010 is incorporated at the 3' end of the RNA product strand. Its modified ribose group (2'-fluoro, 2'-methyl) prevents correct alignment of the incoming NTP, in this case a second AT-9010, causing immediate termination of RNA synthesis. The third AT-9010 is bound to the N-terminal domain of nsp12 - known as the NiRAN. In contrast to native NTPs, AT-9010 is in a flipped orientation in the active-site, with its guanine base unexpectedly occupying a previously unnoticed cavity. AT-9010 outcompetes all native nucleotides for NiRAN binding, inhibiting its nucleotidyltransferase activity. The dual mechanism of action of AT-527 at both RdRp and NiRAN active sites represents a promising research avenue against COVID-19.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Guanosina Monofosfato/análogos & derivados , Fosforamidas/química , Fosforamidas/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , SARS-CoV-2/enzimología , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo , COVID-19/virología , Microscopía por Crioelectrón , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Guanosina Monofosfato/química , Guanosina Monofosfato/farmacología , Humanos , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Proteínas Virales/genética
9.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1541316

RESUMEN

As coronaviruses (CoVs) replicate in the host cell cytoplasm, they rely on their own capping machinery to ensure the efficient translation of their messenger RNAs (mRNAs), protect them from degradation by cellular 5' exoribonucleases (ExoNs), and escape innate immune sensing. The CoV nonstructural protein 14 (nsp14) is a bifunctional replicase subunit harboring an N-terminal 3'-to-5' ExoN domain and a C-terminal (N7-guanine)-methyltransferase (N7-MTase) domain that is presumably involved in viral mRNA capping. Here, we aimed to integrate structural, biochemical, and virological data to assess the importance of conserved N7-MTase residues for nsp14's enzymatic activities and virus viability. We revisited the crystal structure of severe acute respiratory syndrome (SARS)-CoV nsp14 to perform an in silico comparative analysis between betacoronaviruses. We identified several residues likely involved in the formation of the N7-MTase catalytic pocket, which presents a fold distinct from the Rossmann fold observed in most known MTases. Next, for SARS-CoV and Middle East respiratory syndrome CoV, site-directed mutagenesis of selected residues was used to assess their importance for in vitro enzymatic activity. Most of the engineered mutations abolished N7-MTase activity, while not affecting nsp14-ExoN activity. Upon reverse engineering of these mutations into different betacoronavirus genomes, we identified two substitutions (R310A and F426A in SARS-CoV nsp14) abrogating virus viability and one mutation (H424A) yielding a crippled phenotype across all viruses tested. Our results identify the N7-MTase as a critical enzyme for betacoronavirus replication and define key residues of its catalytic pocket that can be targeted to design inhibitors with a potential pan-coronaviral activity spectrum.


Asunto(s)
Exorribonucleasas/química , Modelos Moleculares , Conformación Proteica , Proteínas no Estructurales Virales/química , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Secuencia Conservada , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Viabilidad Microbiana , Motivos de Nucleótidos , ARN Viral/química , ARN Viral/genética , Proteínas de Unión al ARN , Relación Estructura-Actividad , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
10.
Elife ; 102021 10 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1456505

RESUMEN

The absence of 'shovel-ready' anti-coronavirus drugs during vaccine development has exceedingly worsened the SARS-CoV-2 pandemic. Furthermore, new vaccine-resistant variants and coronavirus outbreaks may occur in the near future, and we must be ready to face this possibility. However, efficient antiviral drugs are still lacking to this day, due to our poor understanding of the mode of incorporation and mechanism of action of nucleotides analogs that target the coronavirus polymerase to impair its essential activity. Here, we characterize the impact of remdesivir (RDV, the only FDA-approved anti-coronavirus drug) and other nucleotide analogs (NAs) on RNA synthesis by the coronavirus polymerase using a high-throughput, single-molecule, magnetic-tweezers platform. We reveal that the location of the modification in the ribose or in the base dictates the catalytic pathway(s) used for its incorporation. We show that RDV incorporation does not terminate viral RNA synthesis, but leads the polymerase into backtrack as far as 30 nt, which may appear as termination in traditional ensemble assays. SARS-CoV-2 is able to evade the endogenously synthesized product of the viperin antiviral protein, ddhCTP, though the polymerase incorporates this NA well. This experimental paradigm is essential to the discovery and development of therapeutics targeting viral polymerases.


To multiply and spread from cell to cell, the virus responsible for COVID-19 (also known as SARS-CoV-2) must first replicate its genetic information. This process involves a 'polymerase' protein complex making a faithful copy by assembling a precise sequence of building blocks, or nucleotides. The only drug approved against SARS-CoV-2 by the US Food and Drug Administration (FDA), remdesivir, consists of a nucleotide analog, a molecule whose structure is similar to the actual building blocks needed for replication. If the polymerase recognizes and integrates these analogs into the growing genetic sequence, the replication mechanism is disrupted, and the virus cannot multiply. Most approaches to study this process seem to indicate that remdesivir works by stopping the polymerase and terminating replication altogether. Yet, exactly how remdesivir and other analogs impair the synthesis of new copies of the virus remains uncertain. To explore this question, Seifert, Bera et al. employed an approach called magnetic tweezers which uses a magnetic field to manipulate micro-particles with great precision. Unlike other methods, this technique allows analogs to be integrated under conditions similar to those found in cells, and to be examined at the level of a single molecule. The results show that contrary to previous assumptions, remdesivir does not terminate replication; instead, it causes the polymerase to pause and backtrack (which may appear as termination in other techniques). The same approach was then applied to other nucleotide analogs, some of which were also found to target the SARS-CoV-2 polymerase. However, these analogs are incorporated differently to remdesivir and with less efficiency. They also obstruct the polymerase in distinct ways. Taken together, the results by Seifert, Bera et al. suggest that magnetic tweezers can be a powerful approach to reveal how analogs interfere with replication. This information could be used to improve currently available analogs as well as develop new antiviral drugs that are more effective against SARS-CoV-2. This knowledge will be key at a time when treatments against COVID-19 are still lacking, and may be needed to protect against new variants and future outbreaks.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , Nucleótidos/farmacología , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Línea Celular , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Modelos Teóricos , Nucleótidos/metabolismo , ARN Viral , SARS-CoV-2/enzimología , Procesos Estocásticos , Replicación Viral/efectos de los fármacos
12.
Cell Rep ; 36(9): 109650, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1363915

RESUMEN

Coronaviruses have evolved elaborate multisubunit machines to replicate and transcribe their genomes. Central to these machines are the RNA-dependent RNA polymerase subunit (nsp12) and its intimately associated cofactors (nsp7 and nsp8). We use a high-throughput magnetic-tweezers approach to develop a mechanochemical description of this core polymerase. The core polymerase exists in at least three catalytically distinct conformations, one being kinetically consistent with incorporation of incorrect nucleotides. We provide evidence that the RNA-dependent RNA polymerase (RdRp) uses a thermal ratchet instead of a power stroke to transition from the pre- to post-translocated state. Ultra-stable magnetic tweezers enable the direct observation of coronavirus polymerase deep and long-lived backtracking that is strongly stimulated by secondary structures in the template. The framework we present here elucidates one of the most important structure-dynamics-function relationships in human health today and will form the grounds for understanding the regulation of this complex.


Asunto(s)
COVID-19/virología , ARN Polimerasa Dependiente de ARN de Coronavirus/fisiología , Nucleótidos/metabolismo , ARN Viral/biosíntesis , SARS-CoV-2/fisiología , ARN Polimerasa Dependiente de ARN de Coronavirus/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Moleculares , Conformación Molecular , Nucleótidos/química , ARN Viral/química , Imagen Individual de Molécula , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/fisiología
13.
14.
Trends Biochem Sci ; 46(11): 866-877, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1283592

RESUMEN

With sizes <50 kb, viral RNA genomes are at the crossroads of genetic, biophysical, and biochemical stability in their host cell. Here, we analyze the enzymatic assets accompanying large RNA genome viruses, mostly based on recent scientific advances in Coronaviridae. We argue that, in addition to the presence of an RNA exonuclease (ExoN), two markers for the large size of viral RNA genomes are (i) the presence of one or more RNA methyltransferases (MTases) and (ii) a specific architecture of the RNA-dependent RNA polymerase active site. We propose that RNA genome expansion and maintenance are driven by an evolutionary ménage-à-trois made of fast and processive RNA polymerases, RNA repair ExoNs, and RNA MTases that relates to the transition between RNA- to DNA-based life.


Asunto(s)
Virus ARN , Secuencia de Aminoácidos , Tamaño del Genoma , Metiltransferasas , Virus ARN/genética , ARN Viral/genética
16.
ACS Cent Sci ; 7(5): 792-802, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1225483

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global threat to human health. Using a multidisciplinary approach, we identified and validated the hepatitis C virus (HCV) protease inhibitor simeprevir as an especially promising repurposable drug for treating COVID-19. Simeprevir potently reduces SARS-CoV-2 viral load by multiple orders of magnitude and synergizes with remdesivir in vitro. Mechanistically, we showed that simeprevir not only inhibits the main protease (Mpro) and unexpectedly the RNA-dependent RNA polymerase (RdRp) but also modulates host immune responses. Our results thus reveal the possible anti-SARS-CoV-2 mechanism of simeprevir and highlight the translational potential of optimizing simeprevir as a therapeutic agent for managing COVID-19 and future outbreaks of CoV.

17.
Antimicrob Agents Chemother ; 65(4)2021 03 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1159599

RESUMEN

The impact of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, is global and unprecedented. Although remdesivir has recently been approved by the FDA to treat SARS-CoV-2 infection, no oral antiviral is available for outpatient treatment. AT-527, an orally administered double prodrug of a guanosine nucleotide analog, was previously shown to be highly efficacious and well tolerated in hepatitis C virus (HCV)-infected subjects. Here, we report the potent in vitro activity of AT-511, the free base of AT-527, against several coronaviruses, including SARS-CoV-2. In normal human airway epithelial cells, the concentration of AT-511 required to inhibit replication of SARS-CoV-2 by 90% (EC90) was 0.47 µM, very similar to its EC90 against human coronavirus (HCoV)-229E, HCoV-OC43, and SARS-CoV in Huh-7 cells. Little to no cytotoxicity was observed for AT-511 at concentrations up to 100 µM. Substantial levels of the active triphosphate metabolite AT-9010 were formed in normal human bronchial and nasal epithelial cells incubated with 10 µM AT-511 (698 ± 15 and 236 ± 14 µM, respectively), with a half-life of at least 38 h. Results from steady-state pharmacokinetic and tissue distribution studies of nonhuman primates administered oral doses of AT-527, as well as pharmacokinetic data from subjects given daily oral doses of AT-527, predict that twice daily oral doses of 550 mg AT-527 will produce AT-9010 trough concentrations in human lung that exceed the EC90 observed for the prodrug against SARS-CoV-2 replication. This suggests that AT-527 may be an effective treatment option for COVID-19.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Guanosina Monofosfato/análogos & derivados , Guanosina/farmacología , Fosforamidas/farmacología , Profármacos/farmacología , SARS-CoV-2/efectos de los fármacos , Administración Oral , Animales , COVID-19/virología , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Coronavirus Humano 229E/metabolismo , Coronavirus Humano OC43/metabolismo , Cricetinae , Células Epiteliales/virología , Guanosina Monofosfato/farmacología , Humanos , Pulmón/virología , SARS-CoV-2/metabolismo , Células Vero , Replicación Viral/efectos de los fármacos
18.
Trends Immunol ; 42(1): 31-44, 2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1065238

RESUMEN

The majority of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals remain paucisymptomatic, contrasting with a minority of infected individuals in danger of death. Here, we speculate that the robust disease resistance of most individuals is due to a swift production of type I interferon (IFNα/ß), presumably sufficient to lower the viremia. A minority of infected individuals with a preexisting chronic inflammatory state fail to mount this early efficient response, leading to a delayed harmful inflammatory response. To improve the epidemiological scenario, we propose combining: (i) the development of efficient antivirals administered early enough to assist in the production of endogenous IFNα/ß; (ii) potentiating early IFN responses; (iii) administering anti-inflammatory treatments when needed, but not too early to interfere with endogenous antiviral responses.


Asunto(s)
Antivirales/inmunología , COVID-19/inmunología , Factores Inmunológicos/inmunología , Interferón Tipo I/inmunología , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/metabolismo , Antivirales/uso terapéutico , COVID-19/virología , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Factores Inmunológicos/metabolismo , Factores Inmunológicos/uso terapéutico , Interferón Tipo I/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Replicación Viral/efectos de los fármacos , Replicación Viral/inmunología , Tratamiento Farmacológico de COVID-19
20.
J Virol Methods ; 288: 114013, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-912400

RESUMEN

The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) emergence in 2003 introduced the first serious human coronavirus pathogen to an unprepared world. To control emerging viruses, existing successful anti(retro)viral therapies can inspire antiviral strategies, as conserved viral enzymes (eg., viral proteases and RNA-dependent RNA polymerases) represent targets of choice. Since 2003, much effort has been expended in the characterization of the SARS-CoV replication/transcription machinery. Until recently, a pure and highly active preparation of SARS-CoV recombinant RNA synthesis machinery was not available, impeding target-based high throughput screening of drug candidates against this viral family. The current Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic revealed a new pathogen whose RNA synthesis machinery is highly (>96 % aa identity) homologous to SARS-CoV. This phylogenetic relatedness highlights the potential use of conserved replication enzymes to discover inhibitors against this significant pathogen, which in turn, contributes to scientific preparedness against emerging viruses. Here, we report the use of a purified and highly active SARS-CoV replication/transcription complex (RTC) to set-up a high-throughput screening of Coronavirus RNA synthesis inhibitors. The screening of a small (1520 compounds) chemical library of FDA-approved drugs demonstrates the robustness of our assay and will allow to speed-up drug discovery against the SARS-CoV-2.


Asunto(s)
Colorantes Fluorescentes , Ensayos Analíticos de Alto Rendimiento , ARN Viral , ARN Polimerasa Dependiente del ARN/metabolismo , Síndrome Respiratorio Agudo Grave/diagnóstico , Síndrome Respiratorio Agudo Grave/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Antivirales/farmacología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Activación Enzimática , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Concentración 50 Inhibidora , ARN Mensajero/genética , Moldes Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA